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Given ¢: [0,) + [0,%) a nondecreasing locally Lipschitz function, we

prove the uniqueness of the solution of u, - A¢(u) = 0 in (0,T) x RF when
the initial datum is a finite nonnegative measure. The existence question is

alsc considered.
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SIGNIFICANCE AND EXPLANATION

The uniqueness property for solutions of an initial-value problem turns
out to be a fundamental tool which interacts with many other questions of a
qualitative nature. For an evolution equation that is supposed to serve as a
model for a natural phenomenon, it is often crucial if one wants the model to
be credible.-

The equations of the type
(E) u, - d¢(u) = 0 4in (0,») x nF .

where ¢: (0,%) + (0,») is nondecreasing, arise in many applications. These
include the flow of a gas through a porous medium, the spatial spread of
biological populations, the interstellar diffusion of galactic civilizations,
the heat flow in a material with a temperature dependent conductivity, the so-
called Stefan-problem, some problems in plasma physics, etc. ;The variety of
these applications explains the abundant literature concerning uniqueness for

such problems.-

: Thii paper is a new contribution to this question. It deals with the
case when the initial datum is a measure, (E) being understood in the sense of
distributions. Thanks to this general setting, it recovers most of the
previous results and takes into account a larger number of physical models.
But its main interest comes from the fact that it solves the Yright” unique-
ness question in a form which arises in many other related questions. PFor
instance the study of the asymptotic behavior of the solutions of (E) can be
reduced to this type of a uniqueness problem with a Dirac mass as initial
datum. .

’
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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UNIQUENESS OF THE SOLUTIONS OF ut- A¢(u) = 0
WITH INITIAL DATUM A MEASURE
Michel Pierre

Let us first state the main result of this paper. Let
¢: [0,°) + [0,%) Dbe nondecreasing, locally Lipschitz and ¢(0) = 0. Let us

consider the problem

(1) we o, x &Y n Lo((T,T) x BY) ¥t e (0,T)

(P)

(2) w - AWw =0 in D'((0,T) x &Y)

where "in D'((0,T) x RF)“ means "“in the sense of distributions in
(0,7) x ",
THEOREM 1. Let u and u be two nonnegative solutions of (P)s If N = 1 or

2, assume also that ¢(u), ¢(u) € L1((0,T) X RF). Then

(3) lim ess u(t) - a(t) = 0 in P'(R)
t+¥0

implies u = ue

A lot of papers have already been concerned with the uniqueness of the
solutions of problem (2) especially in the particular case of the porous media
equation u, - A = 0. See, for example, Oleinik [19], Kalashnikov [12],
Gilding and Peletier {10], Kamin [13] for one space variable, Vol'pert and
Hudjaev (22]), Sabinina {20] and finally Brezis and Crandall [6] in the general
case. In the latter work which recovers most of the previous uniqueness
results contained in the above, the initial value is assumed to be in L (rY)

(or L (R')) and (3) holds in LV (®Y).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under

Grant No. MCS-7927062.
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Here the initial value is only a finite measure which is the limit of

u(t) in the sense of measure (only!) -~ its existence is implied by (1) and

(2) (see lemma 2). This leads to a more sophisticated analysis whose main
difficulty is solved by using precise properties of the poéentials of the
functions u(t) for N > 3. A different proof for N = 1,2 is necessary due
to the non-existence of potentials; it requires ¢(u) € ! which is in fact
implied by - (1), (2) in the cases of interest (see remark 3 and theorem 4).
Among the uniqueness results mentioned above, only Kamin in ([13] considers the
case of a measure as initial data in the particular case of dimension 1 with a 2
Dirac mass.

Here our proof is quite general and not particular to R'. It would
carry over to equation (2) in a bounded domain O of R with Dirichlet or
g . Neumann boundary conditions. ) 3

The section 1 is devoted to the proof of theorem 1. In the section 2, we

state an existence theorem for solutions of (P) whose initial value is a given
nonnegative finite measure. We also study the dependence on the initial data.
Some last comments about motivations. The equation (2) arises in many
applications. We will not recall them here since they can be found in most of
the papers mentioned above or in the references they contain (see also [18]
for a survey about the porous media equation). The case when the initial
datum is a measure is also a model for physical phenomena (see [13) and (23]
p. 677+ Moreover it arises in several mathematical questions. One example

is the study of the asymptotic behavior for the solutions of the porous media

equation which can be reduced to the uniqueness problem with a Dirac mass as

initial data (see Friedman-Kamin (11), Kamin [15)). - .
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SECTION 1
We denote by Cc(ng) (resp. cb(!p)) the set of continuous functions on
® with compact support (resp. bounded) and by M(IF). {resp. M*(lﬁ)) the
. set of finite (resp. and nonnegative) Radon measures on . a sequence
unczM(lF) is said to be converging to u in oUU(RN), cc(lp)) {resp.

O(NKRF), Cb(lp))) if, for any ¢ € cc(lp) (resp.v € cb(lF))

lm [ dau_ = [ pdu .
poe ny n RF

Let E (x) =

- vhere 8y is the surface of the unit N-

1
] N—Z
(N Z)Sle.

sphere. For u, U solutions of (P) we denote

wer.

. a.e. te (0,T), v(t) = B, * ult), v(t) = K * le) .
since u(t) ¢ L' (B n LT (R, w(t) e cb(n“) n tP(RY) for p> if_z (This !

follows from elementary properties of the convolution in L)

Lemma 2. If u is a nonnegative solution of (P), u(t) converges in :

a(M(R“). cb(lp)) to some u ¢ M+(RN) when t + 0 essentially. Moreover
when t decreases to 0, v(t,x) increases to v(0,x) = (!N * u)(x) for
all x ¢ R,
. (Note that v(0,x) is lower semi-continuous and is the usual potential
of the finite measure u).
Proof of lemma 2

The relation (2) implies that




t
| (4) ace. 0<8<tST, ult) -uls) =4[ ¢(ule))d in D(EH .
-]
This is easily obtained by multiplying (2) by test~-functions an(t)e(x)
8¢ (R) ana o.n(t) € T0,T) converging to 1[s,t] in a suitable way.

Note that tl: assumptions on ¢ together with (1) imply
1 N L N
(5) ¢(u) e L ((T,T) xR )nL ((t,T) x R'), ¥T € (0,T) .

Actually the relation (4) defines u(t) for all t € (0,T)]. Moreover since

t

u(t) - u(s) and I w(u(o))da € L‘(RN), for all 0 < s < ¢t < 7T
s
(6) J oute) = [ ue :
R R ;
i
: t ,, |
(7) w(t) - v(s) =K * (& / etuo))do) = = [ y(u(o))ds < 0 a.e. on R . f
8 -] E
i

In {7) we use a uniqueness result (see e.g. (4] lemma A.5).
The relation (6) implies the relative compactness of {u(t) ; t e (0,T)}

in U(M(RN), cc(RN)). The monotonicity proves the uniqueness of the limit y

L e TS e

of u(t) and the second part of the lemma (see e.g. [17] theorems 0.6, 3.8,

3.9 about potentials of measures). Moreover

vit) € v(0) = | g - Avie) < [ - avio) .
R R

{
3
)
i

Hence IIP u(t) converges to IIP - Av(0) = | g & and u(t) converges to
R

W oin oMRY), ).

4=




Proof of theorem 1‘£or N2> 3

Let h € ]0,T{ be fixede If u and u are solutions of (P), by (4) we

have

oo (8) V0 ¢ s € t < t+h < T,
. e .

(u(t) - a(t+h)) = (u(s) - A(s+th)) = A [ [¢(u(o)) - ¢(a(o+h))]lde .
8

| Letting 8 go to 0 gives in D (RY):

[V

t
(9) (ult) - G(t+h)) - (r - 4(h)) = & [ ([o(u(o)) - p(d(o+h))ldo .
0

t t
Remark that s » [ ¢(u(c))do is nondecreasing and A | elulo))de is

. 8 8

bounded in L1(RF). By the results in (4] (lemma A.5), it converges in

t

} Ll (lF) to f v(u(o))do. Let us denote
oc 0
}
t
g(t) = [ [p(u(o)) - ¢((o+h)]do + ¥(h) ~ v(0) .
0

Then (9) can be written as

u(t) - u(t+h) = Ag(t) (eeg(t) = V(t+h) = v(t)) |,

where v(t) 1is defined in lemma 2. This implies

. (10) gt(t) = a(t) Ag(t) ,

where

4+ s - sgm g, e




plu(t,x)) =~ ¢ (u(t+h,x))

u(t,x) - u(t+h,x) if u(t,x) ¥ u(t+h,x) .

a(t,x) =
0 if u(t,x) = W(t+h,x) .

The function a is nonnegative and is in L“((T,T) x RN) for any
T€ (0,T)s Hence g is solution of a linear equation; moreover if
lim u(t) = lim u(t), g(0) = ¥(h) - v(0) 4is nonpositive by lemma 2. If
t+0 t+0
a{(¢) were regular enough, by the maximum principle applied to (10) we would

obtain
(11) Y0 <t <tth<T, glt) = v(t+h) = v(t) € 0

And that would imply Vv < v, and, by a symmetric argument Vv = v and U = u.
What follows is to justify this maximum principle for the equation (10) in our
particular case. The method consists in multiplying (10) by the solution ¥
of the dual problem ¥, + A(ay) = 0, ¥(T) = 8 ¢ p'(R), 0 < T+h ¢ T, which

formally gives

| g(™e =] _ gtsivia) .
R T

(D*(np) denotes the space of nonnegative Ca-functions with compact support

in ®Y).
Then, we show that the right-hand side has a nonpositive limit when s + 0.

The first step is to “"solve"” the above equation. For this let us .

approximate a by ap € C.(IO,EI x RN). nonnegative and satisfying:




e A Y P I A S s e s i [AAMOETL DN TN YD BLNRCANSEES s - e e

ap, IVapl, Aap are bounded on [O,E] x !F for any p
¥t € (0,T), a, is bounded on (1,T) x R independently of p

a, converges to a a.e.(t,x) € (0,7) x R® .
(For instance, one can mollify a and multiply by a c“-function equal to
1 for |x| < p and equal to 0 for |x| > p+1).

Then, € > 0 being fixed we consider the dual problem
) - + N

where 0 < T+h < T. For simplicity we still denote T by T. It is well-
known that this problem has a nonnegative c“-solution such that
1,.N o N
wp(t) €eL (R)nL (R') for all t (see [16]).

Now, multiply equation (10) by wp and integrate to obtain:

T M
InN g(T)e - IRN gls)y (8) = Is juN (glo) 372(0) + a(0)y_(0)Ag(0))do

T
= - - A do .
fs fmN (a - a - €y (9)4g(o)

In order to pass to the limit in p for s € (0,T), let us make some

estimates on wp' For convenience we denote
= * t =» =AH = t .
Hp(t) By wp( ) ( p(t) Wp( ))

Multiplying (12) by Hp(t) gives

2 2
[ oI () = [  (a+e)y
" & 2"

[ e =2 v ceri? s fT [ (aver? .
R R P s R P P

-7=




This proves that vp is bounded in Lz(O,T;RN); it has a subsequence weakly

converging to *e' Then (ap+e)¢p also weakly converges to (a+e)¢e in
Lz((T,T) x RF) for any T £ (0,T). Hence the limit *; satisfies, in
D' (RN), an integrated form of (12), namely

t

(15) W0 <8< EST Y (t) - b (8) = -0 [ (ate)y, .
8

since [ N wp(t) = | N 8, Wp(t) is bounded in LY(RM). Hence v, is in
R

LY(®RY) and by (15)

(16) J vty =/ _8 .

RN € RF
Moreover, one can assume that wp(t) converges to ws(t) in o(M(RN),
Cy(RY)) for all t > 0.

Now (13) becomes:
T
(17) [ qome - [ aew(s) =~ [ [ -y (a)dgloras .
R R s R

(Remember that Ag(t) = u(t) - G(t+h) is bounded in any LF((s,T) x R")
and ap converges to a a.e. on (s,T) % Rﬂ and is uniformly bounded.)
Now we let € + 0. For any s € (0,T), the right-hand side of (17) is
bounded by
T

elagl o [ W_(o ,
ety xRy s @

which converges to 0 since we is bounded in L“(O,T,L1(RN)) by (16). If

He(t) = EN' we(t), integrating (15) gives
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t

H_(t) - H (8) = fs(aﬁ»:)‘l’e .

By the nonnegativity of we and He this implies

0 < He(t) < HE(T) = EN *0 .

is bounded in LP((O,T) x RN) for p > §§5 and one can find

Hence He
converging a.e. and strongly to H

convex combinations of these He in

Lp((O,T) x RN) for some p € ‘Egi'”" Since ¢8(s) is uniformly bounded

in L1(RN), we can assume that the same combinations of we(s) converge

a.e. 8 in O(M(RN), Cc(Ry)) to Vv(s) € M+(RN). In order to pass to the

limit in (17), we need a convergence in O(M(RN), Cb(RN)). This comes from

the fact that

(18) ¥se (0,7), [ av(s) =) 6 =1m [ ¥y (s) .
g R e+0 RV °©

T
Hence, by (15)

(a+€)y_ is bounded in LhrY).

s
+
there exists p(s) e M (RN) such that

Indeed, for any s € (0,T), f

8 - v(s) = -Ap(s) in D'(RY) .

This together with (16) implies (18).

We finally obtain the existence of a family of nonnegative finite

measures {Vv(s), s € (0,T)} such that

N gl(s)av(s)

¥s € (0,T) [ y 918 = J
R R

(19)
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and

(20) 8™ H(s) = EN * v(s) 4is nondecreasing on (0,T) .

((20) comes from the monotonicity of He)'

Now, g(s) = v(st+h) ~ v(s); by the monotonicity results of lemma 2, (19)

gives

(21) ¥0 < 8 ¢ 8y

fn“ g(T)e < jRN (¥(h) - vis,))av(s) = fRN (u(h) - u(s,))B(s) .

(See the remarks below for the integration by part.) But f N dv(s) is
R

bounded independently of s and H(s) decreases pointwise when s decreases

to 0. Hence v = -AH(0T) ¢ M () and by (21)

(22) ¥0 < Sq
A + -~
JRN g(T)e < IRN (8(h) - u(s,)IH(0") = IRN (V(h) - v(s ))av .

Now letting sy decrease to 0 gives by monotonicity
(23) J . gtme < [ (¥(h) -~ v(0))av .
IF RN

But v(0,x) = ¥(0,x) » ¥(h,x) for all x € R'. Hence

veed'®, [ gmeco ,

oy

-{0=-

- —;l-------h----------uhﬁilﬁiihliﬁ-uli




This implies the relation (11) we were looking for.

Remark 1. In the above we often use the fact that given u,v ¢ M+(RN):
L] -
(24) In" (B, * wav ,(RN (Bg * vidu ,

whatever this integral is finite or not. 1In (22), H(0*) 4is the decreasing
limit of the potentials H(s). It is generally not a L.s.c. potential itself
but is equal a.e. to EN * v, Since u(h) - u(sp) is a "good” function, the
integration by part works. It would not for h = 0, for u(0) is only a
measure (see e.g. [17) for more details).

Remagk 2. The same method would give a similar uniqueness result for the

equation
u, = Ay (u) in  D'((0,T) x Q)

"o(u) = 0 on " (orx "%; ¢(u) = 0 on ")

ult) » u in o(MRY), c &)

b

with @ a regular bounded open subset of RN, by using the "potentials”

v(t) solutions of

~ Av(t) = u(t)

vit) = 0 on 3R (or %; vit) =0 on dN) .

This method would clearly contain the cases N = 1,2.
Remark 3. There is no potential in R if N = t.2. Hence we have to do the

above computations in an "approximated” way using the solutions of
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ava(t) - Avh(t) = u(t) ,

and letting a go to 0. This requires more a priori assumptions on the
solution u, namely v(u) € L‘((O,T) x RF). This is implied by (1), (2) in
most cases of interest, like the porous media case v(r) = r™® (see theorem 4)
or the Stefan problem case y¢(r) = (r-1)" (since u ¢ L1((0,T) x RF)). It
was also proved in [14], that this always holds in dimension 1 with very weak
agsumptions on ¢.

Proof of theorem 1 for N = 1,2,

Since there is no potential in RY if N = 1,2, we will use the

solutions of
(25) YVt >0 av (t) - Av (t) = u(t), a%a(t) - Asa(t) = u(t) .

For a > 0, (rx--A)-1 is a "good" operator even when N = 1,2 and in

particular (see e.g. (4] lemma 1.1):

ut) e VR 0 7@ = v () € R cb(ny) .

1, i.e,

We will denote xh the kernel associated with (a-A)-
vq(t) = Ku * u(t). The result corresponding to lemma 2 is:
Lemma 3. If u > 0 is a sclution of (P), wu(t) converges in

a(M(RN), cb(ny)) to some U € M+(RN) when t + 0. Moreover when ¢t
T

decreases to 0, va(t,x) + a Ka * f v(u{o))dc increases to
T t
K * (u+af ¢(ue))do(x) for all x e R and all Te (0,T).
0
A
-|2=

e v D ———————
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T
Note that for T € (0,T) fixed, K * [ #(u(0))& is continuous and
t

when t decreases to 0, it increases to the Z.s.c. function

1 T
Ka . f ¢(u(o))do which is well-defined since f ¢(ul(o))do ¢ L‘(HF) by
0 0
assumption on ¢.

T
If w (t) =v (t)+aK * [ ¢(u(e))do, we have for 0 < 8 < t:
t

t
w lt) = w (8) = K *(u(t) - u(s) - a f’ p(u(0))do)

t t
= K *((8=a) [ ¢(uo))do) = - [ ¢lue)lds < 0 a.e.
8 8

This proves the second part of the lemma. Then we finish as in lemma 2 using

that

J outy=[ av(el > av(0)=[_au .
2 N e & 2

Now to replace the function g of the previous proof, we introduce for

h >0 fixed:

t t
g (t) = [ 6(0)das + ¥ (h) = v (0) - ala~8)"' [ Glo)eo
0 0

where we denote G(ag) = ¢(u(c)) - ¢(G(o+h)). Then we verify

(26) (a~8)g, (t) = a(t+h) = u(t) (e g,(t) = 3&(t+h) = v ()

P DA Tr Cppery




(27) gy, * ala-B)g,(t) = —a(e-8)"6(¢) < a K, ¢ o(u(tsh))

where a is defined in the previous proof.
Now, we do the same computations as for N » 3 with the operator a-4
ingtead of ~A and we obtain - like in (19), (20) - the existence of

{va(s) € M+(RF): s € (0,T)} such that, for 6 ¢ D*(lr)x

¥s € (0,T)
(28)
T ~
J N T (IO < / y TS (s) + | ] y @ K * v(utorniav (o)
R R s R
(29) sh Hu(s) = xa * va(s) is nondecreasing on (0,T) .

By lemma 3, for all Tt ¢ (0,T) and 0 < s < 8y

T
9,(8) < v (h) +a X, * fo ¢(u(o+h))daol
(30)
T T
- v (s)) +a K, * f‘o ¢(u(0))do) + a K * !' G(o)as .

Now we can pass to the limit when s + 0 as in (22). The last term of (30)

is easily controlled after integration by part.

linm [ g (s)av_(s)
840 Ry @ @

T T
< fnP[Ga(h) +ax, * jo ¢lu(oth))do - v (s ) - a K * j. ¢(u(g))doldv
0

f g
+ a H (0 ) G(o)daos ,
¢ 0

-1d=




f. with v_ = 1imv (s) and H (0') = K ¢ v a.e. . We let s, decrease to
1 @ w0 ° a (-1 a
0 above, use the monotonicity established in lemma 3 to obtain

B g 1w

h
Tm [ g(mav(s) <[ an ()] patona .
840 'N a a RN a 0

Finally, coming back to (28) and remarking that Ha(l) < au('l') = ‘c * 0 we

have, for any 0 ¢ D*(l“),

o T R
fog0 <[ a0k *[ yue)dao+ [ [ _a 8K *y(u(o+h)) .
a lu a 0 0 a

g g

.

T™+h
. L]
9,(T) € a Kk [o ¢(u(o))do

Now we let h, then a go to 0. For any teL'(lu),avq-axu'!
converges to 0 in D'(R") when a + 0. Indeed, f aw -fu! implies

2 ¢

the convergence of a v, to some V € M*(Rn). The relation
n

azwa - Ao vq) = af implies that Av = 0. Hence Vv = 0. Coming back to the

S T wgmea L

definition of gu('r), we obtain

T
| e(ulo)) = ¢(ula)) €0 .
0

e = vt a2

This completes the proof.

Remark. Thanks to the lemmas 2 and 3, the condition (3) in theorem 1 can be

weakened to the requirement




h
(3)* und [ (at) - i =0 1 ) .
h+0 0

This may be useful in view of the existing literature where the solutions are

often defined as functions u satisfying (1) and

T
[ [ ub, + o(udy + [ _ u(0)¥(0) = 0
o *

'y

for any ¢ € c;([o,r[ x RF). Clearly two solutions u and u of the above

satisty (2) and (3)*.
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SECTION II. Existence results and dependence on the initial data.

THEOREM 4. Let m > 1 and U € M+(RF). Then there exists a unique non-

negative u € C((0,%); L1(R§)) n Lu((r,ﬁ) x RF) for all T > 0 such that

(31) u, = A® in DU((0,2) x R

(32) u(e) * u in o(MEY), cb(RN)) when t + 0 .
If u is another such solution with initial data eA4+(RN)

(33) ¥t € (0,®) IN lu(t) - a(e)] < fN fu=ul
R R

Moreover, if u, € M+(RN) converges to P in o(M(RN), cb(np)), the

associated solutions u (t) converge to u(t) in L1(RF) for all t > 0.

Remark 4. If u is the Dirac mass & at the origin, the solution of (31),
(32) has been explicitly determined (see Barenblatt [2]). It is given by

1

2 So—

u(t'x) = t-k[(a - ME‘-%%)‘] m=1
2mN t

where k" = m1 + % and a is a constant dependingon m and N in such a

way that [ _ u(t) = 1.

'y

Remark 5. The proof of the above result contains several ingredients. First
the existence of a solution to (31) when the initial data is regular. This
was proved in [20). It can also be obtained as a consequence of the abstract

theory of evolution equations governed by accretive operators which carries
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over to the more general equation (2) (see [5)). Then, approximating u by

"regular® functions un, one has to prove that the solution of (31) with
initial data u, converges to the solution of (31) = (32). This needs some
compactness arguments that can be cbtained through two different ways. One

can use that

I.NIAu"I = f ylugl < < Ia“ v, ’
as proved in (1l. Actually this method would apply to (2) for the general
class of functions ¢ described in [8). Here we will use, in conjunction
with some direct estimates in (31), the L.-regularizing effect which says
that the solution of (31) belongs to L ((1,%) x R') for any T > 0. The
latter property - which is needed to apply our uniqueness result - is also
true for equation (2) with very weak assumptions on ¢¥. To illustrate the
generality of this method let us establish, at least for N » 3, a more
general existence result.

Let us consider ¢ : (0,*) + (0,*®) locally Lipschitz, nondecreasing,

¢(0) = 0. Assume N > 3 and for instance (see [3]): §g

(3¢)  3a> 22 guch that (p(r))

N is convex for r large .

Then we have




PROPOSITION 5. Por all u ehl+(RN). there exists a unique non-

L] 1 ‘e N
negative ue L ({(0,2); L (RN)) NL ((t,#) x R') for all T > 0, solution of

u, = Bp(u) in D'((0,%) x )

u(t) + ¥ in o(ME"), cbm“n when t + 0 .

Moreover the estimate (33) holds.
Remark 6. The assumption (34) insures that u ¢ L“((t,w) x RF) for T > 0.
A slightly different assumption can be found in [21].
Proof of Proposition 5.

Let u ¢ L‘(ly) nonnegative and converging to u in o(M(R”),
cb(lp)). By the existence results in [5] and the L“-regularizing effects
established in [3], there exists u, € C([0,»); L‘(RF)) n ﬂ.((r,ﬂ) x RY) for

any T > 0 such that

E ; (35) u, = Aeu) in D'((0,®) x R
. u (0) = n
3
<K°>Y
(36) o (e}, $K+ | =] , X, K,vy>0 ,
n L t 0

where K, K,, Y depend only on lunl 4r Q0 @ and N. Remark that u, is
L
uniformly bounded in C{({0,®); L‘(RF)) since | N Y (t) = f u_ by (35).
g g r

Let us make some formal estimates now. Multiplying (35) by ¢(u,), yields:




s I Niiind T T T e g
(37) ‘éL! IVo(u )2 = ~f  u,_eu) €0 .
ot N n N nt nt

R R

Multiplying (35) by v(un) and integrating give for 0 < 1 < t

t
2
(38) IT In“ 19e(u )| = IRN vlu (1) - vlu (e)

r
where Y(r) = f v(0)ds. Since un(r) is bounded in L independently of n
0
(see (36)), this implies that Vv(un) is uniformly bounded in
2

Lloc((o") x Ry). By (37), Vw(un) is even uniformly bounded in

La(r,“; Lz(ny)) for any T > 0. Hence, integrating (37) proves that

f f N Ynt sp(u.n)t is bounded for any Tt > 0. Since ¢ is locally

Lipschitz, we obtain that f f N [w(un)t]z is bounded. Finally we deduce
T R
that
p(u ) is bounded in w1'2((o ®) x RF)
n Loc '
(39)

the bound depends only on sup Iunl1 .
n

The formal computation (38) can be justified like in (5] - Prop. 10. For the
other ones, we use g¢(u(t+h)) - ¢(u(t)) and let h go to 0.

By (39), there exists a subsequence (still denoted ¢(u,)) converging in
Lioc((o,ﬂ) x RF) and a.e. to some w. On the other hand, a subsequence of
u, converges weakly in Lz(x) for any compact K c (0,®) x RN and the
1imit u satisfies w(t,x) = ¢(u(t,x)) a.e. since ¥ is a maximal monotone

operator in Lz(x) (see [7] prop. 2.5). Clearly

® 1, _N ® ‘ N
ael (0,7, L(R))NL ((t,») x R') for all T > 0 and satisfies

¢
3



u, = Bp(u) dn D'((0,®) x ) .

It remains to show that ﬁ = lim ess u(t) (in O(M(RN), Cb(RN)) which exists
by lemma 1, is equal to u (n5te that [ ab < [ au).

For this, let us assume we have chosen un =y * pn with

pn(x) = XNan(nlxl) ¥xX € RF where p € c“([O,ﬂ)] is supported in [0,1] and

AN is a constant such that f N pn = J, With this choice (see [17])
R

n* vg = EN * un is nondecreasing (and vg increases pointwise to

v'0 - EN * u). Hence

= * .
n -+ vn(t) EN un(t) is nondecreasing

0
Indeed vn(t) is a solution of vnt + w(-Avn) = Q, vn(o) - vn and one can

use the maximum principle for this equation (see e.g. [?]). Since
I.P - Avn(t) - f N un(t) is bounded, v, (t) increases to a potential v(t)
R

such that =Av(t) is the limit (in o(M(RN), Cc(RN)) of -Avn(t) (see e.qg.

[17)). Necessarily v(t) = Ey * u(t) (at least a.e. t). Now ,by lemma 2, if

P - Ey * fi, we have

¥ > w(e) > v_(t)  ¥n, ace. t
;0 ? vo Go > vo .
n
on the other hand
v0 > v0 » v.(t) ¥n, a.e. ¢t
n n
9 5> vt WOyl o




~

Hence Vo ™ Vo and u = ﬁ.
To complete the proof, let us prove (33). By accretivity in L’(RN)

(see [5]), for any n, t:

=)< f ).

n
R

[ duey ~a (e <[ tuo-ul=[_lp
&' n s B N

We apply a Fatou-type lemma to finish.

Proof of theorem 4.

For N > 3, the existence of u is a consequence of the proposition
3.5. Using the particular structure of ¢(u) = ", we add an argument to the
previous proof in order to absorb the cases N = 1,2 and to prove the

continuity results for all N.

.

Let un and u, defined as in this proof. The estimates we established

are valid for any N. Hence (39) holds and a subsequence of w, converges
«© N © 1,_N
a.e. to u el ({(T,) xR)nNL (0,7 L (R)) solution of (31). Moreover, in

this particular case, we have
T m
lim [ [ ul(c)do = 0 uniformly in n .
T™4¥0 0 R
Indeed, by the Lw-estimate (see [3), [21))

)
lun(t)l - € p Iunl with o =

Hence

e O oy L=y
B K =gt

I

—




T T
m 1+86(m=1) dt

f f u (o)do € cliu 1 f <

0 RF n n L1 0 t(m 1)o

where {(m-1)0 < 1 .

- ‘ t
3 In particular, for all ¢, f um(o)do € L1(RN) and is the limit in ,
0 :

t
L;OC(RF) of f u:(o)do. By lemmas 2 and 3, u(t) converges in
0

O(M(RN), Cb(RN)) to some p when t + 0. Now, we can pass to the limit in

t
m N
u (t) - =4 Io u (0)ds in D'(R)

and obtain that u = ﬁ.

Remark that f N un(t) = f u_ f NH°< f N u(t). Hence u,(t) con-
R R R R

T i i R Nl

in L1(RN) for a.e. t and even Yt > 0 by the

verges to ult)

The uniqueness proves the convergence of the whole

contraction property.

sequence.

By (39) for any open subset £ relatively compact in (0,%) X RN

m
(42) fa o <cf W »
w'2q) R 3

And (41) gives

T
(43) [ ] N uw'(o)do € C » T1'°(m'1) . [I , u]1+6(m-1)

0 R R

For the uniqueness when N = 1,2, given u, u solutions of (31), (32)

we apply theorem 1 to u(* + 1) (as well as u(* + 1)) for any T > 0 to

prove that they coincide with the solutions in the sense of semigroups. Hence

(43) holds for u, u and we can apply the theorem 1 to u and U




Madaidhia o oo et

T

Now, let un converge to U in a(M(RN), Cb(RN)) and W, u the
corresponding solutions. The same arguments as above using the estimates

(42), (43) plus the uniqueness result prove that wu, (t) converges to u(t)

in L1(RN)0
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